<section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><text><text><text>

Very small	0.5 to 1 kW
Small	1 to 15 kW
Medium	15 to 200 kW
Large	250 to 1000 kW
Very large	1000 kW to 6000 kW

Single wind turbine generators rated 14 MW are under development (1990). In India, wind farms are operating in Tamil Nadu and Gujarat since 1989. Several new projects totaling 500 MW are at various stages of execution. Wind energy is a manifestation of the solar energy. Wind is the air-in-motion. Energy in the wind is converted into rotary mechanical energy by the wind-turbine. The rotary mechanical energy is used for several applications such as Pumping water Grinding flour Driving generator rotors to produce electrical energy. Mind Energy → Mechanical energy at wind turbine shaft → Mechanical energy utilization Wind Energy → Mechanical energy at wind turbine shaft → Mechanical energy utilization Wind Energy → Mechanical energy at wind turbine shaft → Mechanical energy utilization Wind Energy → Mechanical energy at wind turbine shaft → Mechanical energy utilization Wind Energy → Mechanical energy at wind turbine shaft → Mechanical energy utilization Wind Energy → Mechanical energy at wind turbine shaft → Mechanical energy utilization Wind Energy → Mechanical energy is useful for pumping water, grinding grains, operating, wood-saw etc. The electrical energy can be used by stand-alone loads or by the loads connected to the distribution system Several types of wind-turbines have been developed, installed and are being operated successfully. These are classified into two main categories: Horizontal shaft wind turbine Wind-turbine generators have become commercially successful products and are being encouraged by the departments of Non-conventional and Renewable Energy. Horizontal shaft wind-turbine generator units are more popular. The generator-turbine unit is mounted on a tall tower.

Wind Energy \rightarrow Mechanical energy at wind turbine shaft	→	Electrical energy by generator	\rightarrow	Electrical energy for utilization
---	---	-----------------------------------	---------------	---

<text><text><text><text><text><list-item><list-item><list-item><text><text>

Entity	Symbol	Units
Wind velocity		m/s
Area of stream	V	m ²
Air mass	А	kg
Air mass flow, rate	m	Kg/s
Air mass density	M _d	Kg/m ²
Conversion factor for wind		
speed to power unit	К	m/s
Kinetic energy in wind	KE_w	J
Electrical power	Pe	W
Electrical energy	Ε	J
For simplified analysis, we	begin with the basic power e	quation.
$P_w = k V^3$ W/m^2 Where, $P_w = Wind power density,$	W/m ² (the m ² , represents ar	 ea of wind stream crossir
wind-turbine blade sy		
$\mathbf{k} = $ Conversion factor for w		
$\mathbf{R} = CONVENSION LACTOR 101 V$		
from dimensional analysis, the di		

$$\mathbf{P}_{\mathbf{w}} = \mathbf{k} \, \mathbf{V}^3 \qquad \dots \mathbf{W}/2$$

$$[k] = \left[\frac{W/m^2}{m^3/s^3}\right] = \left[\frac{Ws^3}{m^5}\right] = Ws^3m^{-5}$$

$$\overline{m} = \rho A V_i$$

$$P_t = \frac{\rho A V_i^3}{2} \dots W$$

Fig – 8.6 Power coefficients for various types of wind turbines for practical blade tip speed	

Fig – 8.6 Power coefficients for various	types of wind turbines for r	practical blade tin speed				
ratios	-,	seed of operations				
	f Various Types of Wind Tu	rhines				
	Blade Tip Speed					
Type of Wind Turbine	Ratio: $\frac{\text{Blade Hp Speed}}{\text{Wind speed}}$	Actual Efficiency (η _a)				
Ideal propeller type	1 to 4	0.4 to 0.55				
High-speed 2 blade propeller type	4 to 7	0.4 to 0.45				
Darrieus	4.5 to 7	0.25 to 0.35				
Multiblade	0.25 to 1.4	0.02 to 0.15				
i = incoming-end subscript e = exit end subscript P _i = incoming wind pressure, P _e = Wind pressure at exit from blades, WW $v =$ Specific volume = $1/\rho$ Assuming no energy loss and no change in air density, Incoming wind energy = Exit wind energy $P_i v + \frac{v_i^2}{2} = P_a v + \frac{v_a^2}{2}$ 11 Or $P_i + \rho \frac{v_i^2}{2} = P_a + \rho \frac{v_a^2}{2}$ 12 Where, P _i , P _a and V _i , V _a are pressures and volumes respectively and are the specific volume and specific density. The specific volume and specific density both considered constant, V= 1/e.						
Similarly, for the exit end, we ge	et					
$P_{e} + \rho \frac{{V_{e}}^{2}}{2} = P_{b} + \rho \frac{{V_{b}}^{2}}{2}$		1				
$P_e + \rho \frac{1}{2} = P_b + \rho \frac{1}{2}$ The wind velocity decreases from	inlet nlane 'a' to ovit nlan					
-						
converted into mechanical work. Th						
approaches the turbine to V_a and as it leaves the turbine to V_a and	eaves it to V _e . Thus V _i >V _a a	and V_b>V_e, and therefor				

$$P_i v + \frac{{v_i}^2}{2} = P_a v + \frac{{v_a}^2}{2}$$

$$P_e + \rho \frac{V_e^2}{2} = P_b + \rho \frac{V_b^2}{2} \qquad \dots \dots 13$$

$$P_a = P_i + \rho \frac{V_i^2 - V_a^2}{2} \qquad \dots \dots 133$$

$$P_b = P_e + \rho \frac{V_e^2 - V_a^2}{2} \qquad \dots 13b$$

$$P_a - P_b = \left[P_i + \rho \frac{{V_i}^2 - {V_a}^2}{2}\right] - \left[P_e + \rho \frac{{V_e}^2 - {V_a}^2}{2}\right]$$

$$P_{\rho} = P_{i}$$

$$V_t \approx V_a \approx V_b$$

$$\boldsymbol{P}_a - \boldsymbol{P}_b = \boldsymbol{\rho} \left[\frac{{V_i}^2 - {V_e}^2}{2} \right] \qquad \dots \dots 17$$

$$F_x = (P_a - P_b)A = \rho A \left[\frac{{V_i}^2 - {V_e}^2}{2}\right] \qquad \dots \dots 18$$

$$\overline{m} = \rho A V_t$$

$$F_x = \rho A V_t (V_i - V_e)$$

$$V_t = \frac{1}{2}(V_i + V_e)$$

$$\mathbf{P} = \overline{m} \frac{V_i^2 - V_e^2}{2} = \frac{1}{2} \rho A V_t (V_i^2 - V_e^2) \qquad \dots 23$$

$$\mathbf{P} = \frac{1}{4}\rho A(V_i + V_e)(V_i^2 - V_e^2) \qquad \dots 2^2$$

$$3{V_e}^2 + 2{V_i}{V_e} - {V_i}^2 = 0$$

$$V_{e.opt} = \frac{1}{3} V_i$$

$$P_{\max} = \frac{8}{27} \rho A V_i^3 \qquad \dots 26$$

$$\eta_{\max} = \frac{P_{max}}{P_t} = \frac{8}{27} \times 2 = \frac{16}{27} = 0.56$$
27

<text><list-item><text><text><text><text><text><text><text><text><text><text><text>

and pushes the blade in Fable - 9.1 Horizontal Ax	
Type and Configuration	Remarks
<u>Type and Configuration</u> 1. Propeller Ty Horizontal A	pe 3 Blade Propeller type design, most successful
2. Space Frame Rotor Mans forth Design	 Very large sizes and unit ratings: 3MW to 14MW Large Framed space structure (like a Giant wheel), supports the blades in two parallel vertical planes in symmetrical radial fashion. Commercial success uncertain A few prototypes of lower ratings have been built successfully Prospects uncertain
3. Wind Mill tyj Multi blade Design	
4. Bicycle Whee Multi-blade design	el Simple symmetrical construction Several blades arranged radially like the spokes of a bicycle wheel but with certain width and slant Used for pumping sets Not used for power plants

<section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header>

<text><text><text><text><text><text><text><text><text>

	able: 9.3 Specifica	tions of 3 h	blade wind turbine ge	enerator		
		330kW u		750kW unit		
Rotor						
Rotor type		3-blade ι		3-blade upwind		
Rotor diameter		31 meter		45 meter		
Rotor speed Blade material		37 rev/n		30 rev/min		
Aerodynamic			oxy laminate pitch blade tips	Wood epoxy laminate Variable pitch blade tips		
Actouynamic		(0-30°)	piten blade tips	(0-30°)		
Maximum chor	·d	1.75 m		2.6 m		
Tip chord		0.8 m		0.8 m		
Blade twist		14.0°		13.0°		
Rotor weight		5.4 t		14.6 t		
Transmission		.	11 1 1 4			
Gear box type			oarallel shaft	2-stage epicyclic		
Gear type Gear ratio		Helical 48.8:1	~	Spur 40:1		
Generator type			n or synchronous	Induction		
Generator ratin		330kW		750kW		
Rated voltage 8	0	460V &	60Hz	4.16 kV & 60Hz		
Rated speed		1800 rev,		1200 rev/min		
Nacelle weight		17.0 t	0	40.0 t		
Tower				m 1 1 . 1 . 1		
Tower type Tower diamete	-		steel with base	Tubular steel, conical 2.5 m		
Base diameter	r	1.8 m 4.0 m		2.5 m 7.0 m		
Rotor centerlin	e height	25.0 m		36.0 m		
Yaw system	e noight		ydraulic motor	Geared hydraulic motor		
Tower weight		22.3 t	5	29.4 t		
			Blade Wind Turbine			
Performance	Rated pov			2.5 MW		
	Wind velocity /h	r	At 10 m height	At hub		
	Cut – in Rated		14 m height 32 m height	22 44		
	Cut – out		58 m height	72		
	Max. desig	n limit	192 m height	200		
Wind – Turbine	Diameter		91 m			
n n n	Number of blade		Two			
	Location, rotatio		Upwind, counter c	lockwise		
	Revolution per n		17.5			
	Cone, tilt, twist a	ngles	0°, 2°,8°			
Tip length, each Material			45 ft. 13.7 m Steel			
Tower	Height		58.5 m			
101101	Hub – height		61 m			
	Туре		Flared shell			
	Access		Power man lift			

Performance	Rated power	2.5 MW	
	Wind velocity /hr	At 10 m height	At hub
	Cut – in	14 m height	22
	Rated	32 m height	44
ζ	Cut – out	58 m height	72
12,	Max. design limit	192 m height	200
Wind – Turbine	Diameter	91 m	
$\alpha(1)$	Number of blades	Two	
	Location, rotation	Upwind, counter clockwise	
	Revolution per minute	17.5	
	Cone, tilt, twist angles	0°, 2°,8°	
	Tip length, each	45 ft. 13.7 m	
	Material	Steel	
Tower	Height	58.5 m	
	Hub – height	61 m	
	Туре	Flared shell	
	Access	Power man lift	

Controls	Power regulation	Rotor – tip pitch control, hydraulic
	Yaw	Internal toothing gear
	Yaw motor	Hydraulic , 0.25 Deg/s
	Supervisory	Microprocessor
Generator	Rating power factor	3125 kVA, 0.8
	Voltage, frequency	4160 (three - phase), 60 Hz USA standard
	Revolution per minute	1800
	Gear box	Three – stage planetary
	Gear set – up ratio	103
Mass	Rotor	81,670 kg
	Rotor and Nacelle	165,150 kg
	Tower	115,700 kg

	Controls	Power re	gulation	Rotor	[.] – tip pitch cont	rol, hydr	aulic
		Yaw	-	Inter	nal toothing gea	r	
		Yaw moto		-	aulic , 0.25 Deg/	S	
	Constant	-	SupervisoryMicroprocessorRating power factor3125 kVA, 0.8				
	Generator	Voltage, f		3125 kVA, 0.8 4160 (three - phase), 60 Hz USA standard			
			n per minute	1800	(three - phase),	00 112 0	SA Stallual u
		Gear box	F		e – stage planeta	ry	
		Gear set -	up ratio	103			2
	Mass	Rotor		81,67			6
		Rotor and Tower	i Nacelle		50 kg 00 kg		
		Tower		113,7	00 Kg		900
			OUE	STIONS		$\mathcal{N} \rightarrow$	
Part	:-1: Multiple Ch	oice Questic	ons:		2	<u> </u>	
1.	-	-		tary mec	hanical energy	by the	
	(a) wind-tu	rbine (b)	pumping	(c)	generator	(d)	spring
2.	The horizont	al shaft wind	l-turbine gene		it is mounted o	on a	·
	(a) Ground		tall tower		On river banl	• • •	On mountain
3.					ed on ground l		_
	(a) tall tow		On river ba		Ground level	~ ~ ~	On mountain
4.	-				e generally bui		· · · · ·
-	(a) Wind fai				double units		single units
5.	(a) 59	-	50		d-turbine is on	(d)	-
6.							of a wind-
01	turbine.			ionog ipila		•	or a mila
	(a) Power	(b)	power	(c)	efficiency	(d)	Ripple factor
	efficienc	cy	coefficient		-		
7.					hanical energy		
-	(a) pitch co				wind turbin	e (d)	Tower
8.	India's potent						
0	(a) 50000M		15000MW	(C)	25000kW	(d)	25000 MW
9.	The wind tur (a) Unit					 	Wind mill
10	(a) Unit Force on a bla	• • •	propeller rtional to	(c)	tower	(d)	vv 1110 111111
10.	(a) V^2		V ³		V^4	(d)	V^n
	(u) V	(0)	V		,	(u)	,
Part	:-2: Short answ	er questions	:				
	Give the ener	-					
	Write availab			ic energy	conversion nl	ants.	
	Prepare a tab	-					
	Describe in sl						
	Enlist the adv						norizontal axis
۷.							